博客
关于我
Python_总结列表排重方法
阅读量:288 次
发布时间:2019-03-01

本文共 859 字,大约阅读时间需要 2 分钟。

如何去重:五种常见方法的对比分析

去重是一项常见的数据处理任务,以下是五种常见去重方法的实现代码及解释:

方法一:集合的思想

集合具有去重特性,可以通过将列表转换为集合再转换回列表来实现去重操作。

lis = [1, 2, 3, 1, 2, 1, 1]set_lis = list(set(lis))

这种方法简单高效,适合处理简单列表。

方法二:字典+count函数

通过统计每个元素的出现次数,筛选出现次数为一次的元素。

aa = [1, 2, 3, 1, 2, 1, 1]d = {i: aa.count(i) for i in aa}result = [i for i in d if d[i] == 1]

这种方法可读性高,适用于需要保留所有元素的场景。

方法三:内置函数count + remove

通过循环统计并移除重复元素。

aa = [1, 2, 3, 1, 2, 1, 1]for i in aa:    if aa.count(i) > 1:        for j in range(aa.count(i) - 1):            aa.remove(i)

这种方法适用于小型列表,需谨慎处理大数据量。

方法四:普通遍历+切片

检查当前元素在后续元素中是否出现。

aa = [1, 2, 3, 1, 2, 1, 1]new_aa = []for i in range(len(aa)):    if aa[i] not in aa[i+1:]:        new_aa.append(aa[i])

这种方法直观,适合小数据量。

方法五:更加暴力的遍历

逐个检查元素是否已经存在于新列表中。

aa = [1, 2, 3, 1, 2, 1, 1]new_aa = []for i in aa:    if i not in new_aa:        new_aa.append(i)

这种方法简单直观,但效率较低,适合小数据量。

以上方法各有优劣,选择时需根据具体需求进行权衡。

转载地址:http://hlqo.baihongyu.com/

你可能感兴趣的文章
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>